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Using the impulse method the author obtained integral and differential forms o/a nonlinear heat conduction 
equation with allowance made/or the finiteness o/the velocity o/heat propagation/or an arbitrarily shaped 
solid. 

Introduction. The consistent development of the thermal impulse method [1 ], which had initially been 

called, on T. L. Perel'man's suggestion, the integral method of zero-order heat moments in formulating and solving 

problems of heat conduction [2, 3, 4 ], led to its establishment as a new law of the nonequilibrium thermodynamics 
of complex systems - an impulse principle (see [4-91). Below it is shown how this principle is used to derive heat 

conduction equations in both integral and differential forms that allow for the finite velocity of phonon propagation 

in condensed solids. In [1-9 ], the author described already in sufficient detail not only the thermal impulse theory 

but also its thermodynamic extension with practical applications, particularly, in physical geocryology. Therefore, 

in the given article there is no need to present again proofs and detailed descriptions of the derivation of the basic 

relations. The aim of the work is not only to demonstrate the efficiency of the thermodynamic integral impulse 

method in a concretely formulated problem but also to show that the results of its solution by this method lead to 

a more complete description of the physical phenomenon. 

In the vast majority of cases, allowance for the boundedness of the velocity w8 of phonons (sound) is 

unimportant, but in brief high-gradient thermal processes (heat "shocks") in thin surface layers of solids, for 

example, in solving problems of supersonic aerodynamics, it can be necessary. In the differential heat conduction 

(Fourier) equation, an additional term with ws in the denominator should appear in this case, so that it drops out 

as ws -" o.. This approach to the description of transient heat conduction was proposed independently - by A. V. 
Luikov (1941) and then by P. Vernott (1961) and J. Tavernier (1962). There are already numerous publications 

to date, including monographs devoted to problems of heat conduction for a finite phonon velocity (see [10-13 ]). 

The differential heat conduction equation appeared as [10 ] 

6T 62T O2T *) 
- -  + - -  = a ( 1 )  

d~ Tt dr  2 Ox 2 ' 

where a = 2/c; zt is the time constant of the transmission of thermal excitation by phonons or the relaxation time. 

Let us agree on the notation. While in classical thermodynamics, no allowance is made for time at all, and the 

local (for the entire volume of the working medium) change in temperature is always denoted by dT, in 
heat-conduction theory there is a need to distinguish the local change in the temperature with time and its 

change on displacement along x. Therefore, the partial derivatives dT/dx and dT/O$ are used, and by OT an 

exact differential is meant. And what would be written as dT/d~ in classical thermodynamics will be OT/Or 
in heat-conduction theory. To make the notation of heat-conduction theory approach that accepted in 

thermodynamics, let us denote the elementary change in temperature on displacement along x as dT - OT(x, 
~) and the elementary local increment in temperature with the time T as 6T in order not to confuse it with the 

exact differential dT. Therefore the partial derivative dT/OT will be written as 6T/d~. 
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We note that rt is difficult to determine by experiment and it is given approximately as ~r t ~, a/w~s in 

monograph [10]. However, in [2, 4], it was shown that the time of temperature relaxation in classically shaped 

solids is approximately equal to 12/2af as Bi -~ oo and, therefore, should be r t ffi 2af/w2s. And this indicates that 

the accuracy of setting of the coefficient ~t is very low when concrete problems are solved. 

Owing to the presence of the second term on its left-hand side, Eq. (l) is hyperbolic. And we attemp to 

arrive at this eqution by using the integral regularity of the impulse - the momentum of energy, established earlier 

in [1, 4-6, 8, 9 ], assuming that this regularity will enable us to explicitly use the sound velocity ws in the solid, 
which is determinable by experiment more accurately than ft. 

Physical Principles in the Impulse Method. The basis of this method is formed by the idea of the 
substantiality of energy. It is interpreted not as a derivative of the category of motion (the relational concept) but 

quite the reverse - energy produces motion; it moves in space, too. Historically, the relational and substantial 

concepts of energy have alternated. The most decisive step in the development of the substantial concept belongs 

to N. A. Umov (1874) in his Doctor's Dissertation "Equations of Energy Motion in Solids." This concept, in fact, 
established the principle of energy motion in physics; mechanical work and heat as basic concepts in determining 

the first law of thermodynamics, in this case, become understood as two qualitatively different forms of the motion 

of energy through the boundary surface of the thermodynamic system under study. This principle was further 

developed in [1, 5, 6 ], where energy motion, for any of the degrees of freedom for the system, is meant not simply 

in a three-dimensional space but as overcoming resistance - time resistance (I). This resistance should also be 

interpreted substantially with the idea of its being distributed in the universe, like energy, everywhere in space 

and over the qualitative levels of matter. Owing to this, the notion of universal time resistance I or intergy (from 

the Latin "I place between") is introduced, which has, for different degrees of freedom of the system, qualitatively 

different values, for example, l, herm is thermal intergy, Im is mechanical intergy, etc. The expression for the intergy 

(time resistance) of mechanical motion is special. For discrete particles and solids, it is numerically equal to the 

reciprocal of the velocity of their motion (see [8, 9 ]). And, thus, the energy and the intergy for any degrees of 

freedom of thermodynamic system always interact in pairs: working by the energy against the resistance, or the 

intergy I leads to the appearance of time for any process of energy dissipation. In [1 ], it was shown by examples 

from problems of physical geocryology that any complex thermodynamic system, in essence, forms a certain 

structure of intergies of individual degrees of freedom. And, fundamentally, the energy can move either for a 

parallel arrangement of the intergies of individual degrees of freedom or for their series arrangement. And these 
two possible cases are a analogs of Kirchhoff's laws for parallel circuits. We can see examples of the parallel 

arrangement of the intergies of individual degrees of freedom in a thermodynamic system in a classical formulation 

of the law of conservation of energy (the 1st law of thermodynamics) for any point of the control surface of the 
thermodynamic system. But it is precisely when allowance is made for the finiteness of the velocity of phonon 

propagation in the process of heat conduction in a solid that the example of series arrangement for the intergies of 

individual degrees of freedom of the thermodynamic system is revealed. This finite velocity, or, more precisely, its 

reciprocal, is, in fact, an addition to the thermal intergy/therm that retards the process of heat conduction. We note 
that a great advantage in analyzing processes using the notion of intergy is that it always has the same 

dimensionality - the dimensionality of the reciprocal of the mechanical velocity of motion (sec/m) - for any degree 

of freedom of the thermodynamic system. 

Comparison and Analysis of the Equations. For convenience, let us speak of the cooling of solids. Since 

phonons move inertially, as it were, along any curvilinear coordinate x of their flow, their velocity w s will have an 

effect only purely on the transient portion of the moving internal heat energy (heat) in the solid, in other words 

- only on the zone of heat release cr in the solid in the coordinates T-x; the area of the region a has the 

dimensionality (m.deg.) Then from the principle of time resistance (intergy), we can characterize the motion of 
the unsteady flow of internal heat energy (heat) in a solid as being performed through two series resistances or 

intergies thermal intergy ltherm -- 1 = JN and mechanical (iterational) intergy I m = l / t w s l ;  in other words, the 

total intergy is equal to: 
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where 

I 
/total = I + I m = J N  + "i':S':'T 

I % 1  
(sec/m), (2) 

t = l ( T , x ) ;  N = C ( T , x )  co(x);  

1 
J = J (T, x) = Jsurf + Jint - a (T, x) co (0) 

x a~ 
+ I" 

,l ( r ,  x, r co (~) 

a(T, x) and 2(T, x, ~) are functions obtained by substituting into the coefficients as functions of temperature the 

profiles of the temperature distribution along x for any instant of the time r [4 ]; a = / l / c  is the thermal diffusivity 
coefficient, m2/sec. 

According to the impulse method, we formulate the integral thermodynamic problem in the following 

manner. We dc ,e rmi ,e  the elementary momentum of the internal heat energy (heat) that corresponds to an 
elementary change in the area of the region a:. 

d2H =/total d 2  =/total 3T (x, T:) dx =- 

= (J (T ,x )  C(T,x)CO(x)+ [ -~s[ )3T(x , r )dx .  (3) 

This quantity is always numerically equal to an elementary thermal impulse, which is also of the second order of 
smallness 

d2H = d2~ =- OTdlr. (4) 

But the total definiteness, i.e.~.only on the first-order of smallness, is obtained only after integrating expression 
(4) over the entire interval [0, x ]. And then this yields the desired elementary relation between the thermal impulse 

and the momentum of the internal heat energy (heat) that is fulfilled in an elementary time dr of the unsteady-sta te  

thermal process: 

d~) ( 0  = (Tsurf ( 0  - ~ (Q) dr = f/total (T, x) d2a - f/total (T, x) 6T (x, r) dx, (5) 
0 0 

where Tsurf(O - T(0,O; T(Q = T(x:). 
If, in this case, a phase transition occurs in the solid, we are able to convert the heat of the phase transition 

Qpn to the equivalent heat capacity Cequ = Qph/I Tph - Tree dl,  which is referred to the entire interval Tph -- Treed, 
and the total heat capacity on it will be C = Cm + Cequ, while the general form of formulation equation (5) is 

preserved. 
/ x  

For an arbitrary point x inside the solid, 0 -< x <__ x; relation (5) will be written as: 

^ 

X 

(T (x, ~) - T (r)) d l :=  f/total (T, x, ~) cST (~, r) dE (6) 
X 

or in view of expression (2) 

x 1 f 6v(r  r) d~. (7" (x, ,) - ~ (,)) d~ = fx t ( r ,  x, ~) 6T (~, ~) a~ + ~ x (7) 

Replacing in (7) the integral with I by another form of iterated integral (see [4 ]), we have: 
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f C ( T , ~ )  dr to ( ~ ) d ~ +  T (x, r) - ~ (Q = /1. (T, dr/r/) to (r/) '7 

1 } 6T (~, r) +~x dr ~ "  (8) 

Let us differentiate (8) to obtain again from the given integral form a differential heat conduction equation 

of a hyperbolic type. Upon the first differentiation with respect to x w e  obtain 

OT (x, r) = _ I f~ C OT (~, r) I 6T (x, r) 
(r, ~) (~) 

Ox /l (T,x) co (x) Jx co dr I Wsl dr 

or, allowing for the directivity of the vector of the velocity Ws: 

A 

/l (T,  x) to (x) OT (x, Q x ~ 6 T  (~ :z)_ ~ ,  + 
Ox = - f C (T,  ~) e~ ~{) :-:- d~ ~ 

X 

+ ~ (T, x) to (x) ~ r  (x, r) 
w, ,gr (9) 

Differentiation of (9) once again with respect to x yields 

0 (T, x) to (x) ~ = C (T, x) co (x!; ~ *§ 

+ R (T,  x)  to (x) ~2T 1 tST 0 
w s dxdr + :f3 i(T. x)to ':(~3":i, ws dr ~: ....... 

or finally 

_ _  6 T  ;~ (T, x) to (x) ~ + ~ (.~ (7, ~) o~ ~.~)) = 
Ox 2 w s Ox 

~r  ,~ (T, x) to (x) ~2T 00 )  
= C ( r ,  x) co (x) -~T + w s dxdr"  

This is a nonlinear hyperbolic heat conduction equation but with a mixed derivative, unlike (1). 

For constant/~ and C, Eq. (10) appears as 

1 67" + 1 62T 02T + OT 1 K x ( x ) ,  

a dr w s dxd~ Ox 2 w s 

where Kx(x  ) = w ' ( x ) / w ( x )  =- R ' |x(X) /  R lx (X  ) + R'2x(X)/ R2x(X ) is the overall ("average") curvature of the isothermal 

surface at the point x; for example, for x -- 0 on the solid surface Kx = l / ( l  - x) for an infinite cylinder;  Kx = 

2 / ( l  - x) for a sphere; K x = 0 for a plane solid. 

Expression (l 1) corresponds in the literature to A. D. Chernyshov 's  heat conduction equation, which for 

some reason, does not contain the term ( 1 / w s ) ( 6 T / 6 t ) .  For the plane case, w(x)  = l, Eq. ( l l )  is even more 

simplified: 

6T  + a 62T 02T (12) 
-- a - -  

dT w s dxdT 0x 2" 
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We note  that ,  formally,  the Chernyshov  equation (12) becomes easily the most  widely es tabl ished 

L u i k o v - V e r n o t t  e q u a t i o n  (1) fo r  rt = a/WZs if t h e  c o m b i n e d  d e r i v a t i v e  is r e w r i t t e n  c~2T/dxdr = 
(c~2T/dr2)/(dT/dx) and by convention dx/dr = w s. Then it is found that the inexactness of Eq. (1) should disappear 

when the velocities of the motion of isothermal surfaces in the solid approach the sound velocity in it, and these 

are cases of very thin films. 

Thus,  the problem of forming differential heat conduction equations with allowance for the finiteness of 

the velocity of phonon propagation turned out to be very useful for analysis in the context of the thermodynamic 

impulse method and those physical principles that are built in it. In this problem, the regularity of the additivity 

of thermal and mechanical intergies that acted in the given physical process not only as physical quantities of the 

same dimensionality but also of the same nature manifested itself dear ly .  Where the same form of interaction occurs 

(in the given case, this is a thermal process) and energy motion has simultaneously both thermal (relaxation) and 

mechanical forms, their intergies are summed, signifying by this that they are a series of resistances (of a special 

kind - time resistances) in the path of energy flow. It is precisely by this method that we can allow for the finiteness 

of the velocity of propagation of any form of interaction. 

Equation (5) is an integral form of the hyperbolic heat conduction equation. Owing to the additivity of the 

intergies I and  Im we can identify a term, that integrally allows for the finiteness of the velocity of phonons (sound) 

that is an addition to the total thermal impulse in the entire time of the process r: 

l ~Tax=_l f f elza o Al t s -  f f ws Ws =-%s" 

The  same equation can also be written in integro-differential form - in the time interval d~ 

JH s - 1---'~ c~r (x, It) dx 
w , -  o 

to allow for the additional momentum of energy per instant of time with subsequent superposition of the solutions 

in numerical calculations. 

Conclusion, Thus ,  in the context of the fundamental  physical principles of the thermodynamic  impulse 

theory,  we have interpreted the known heat conduction equations that allow for the finiteness of the velocity of 

phonon propagation.  It is shown that these equations are  somewhat  inexact - in both  thei r  s t ruc ture  and  

coefficients. A more refined form of the nonlinear differential heat conduction equation (10) of a hyperbolic type 

with a mixed derivative for an arbitrarily shaped solid is obtained that includes plane, cylindrical, and spherical 

symmetries.  This equation differs from the known analogous Chernyshov heat conduction equation by the presence 

of the term (1/Ws)(CST/dr). Admittedly, the Chernyshov equation in its physical essence is more exact than the 

Luikov-Vernot t  equation only if the velocity of motion for isothermal surfaces in the solid approaches the velocity 

w s of phonous (sound). Therefore ,  apparently,  the Luikov-Vernot t  equation works well in fast processes only in 

very thin films. If we must allow for the finiteness of phonon velocity in thicker solids, we should use ei ther  the 

Chernyshov equation or the even more refined equation (10). 

N O T A T I O N  

r, time, sec; x, curvilinear space coordinate along the heat-f lux trajectory in a solid for any instant of time 

r and simultaneously the curvilinear axis of the heat-flux tube, chosen by us, which in the general case along this 

x can contract or expand; w(x), area of curvilinear isothermal surface, variable along x and characterized by two 

main normal curvatures Klx = R'lx/Rlx and K2x = R'2x/R2x; Rlx and R2x, two principal normal radii of curvature 
J 

for isothermal surface at point x; the derivatives Rlx and R2x yield only the sign of the curvatures (see [8, 9 ]), 

i.e., are equal ei ther to + 1 or to ( - 1 ) ;  co(x) = RixR2x~solid, ~Osoli d, solid inclusion angle, for example,  co(x) = 1 for 

a plane section of surface; co(x) = Rlx~ p for a cylindrical section of surface with radius of curvature Rtx and inclusion 

angle ~; the angles ~o and ~Osoli d can be chosen arbitrarily (for the maximum ~o = 2g and ~Osolid --- 4n);  x = 0, on the 
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solid surface; x = x", point of thermal perturbation in a solid, most distant from the solid surface; if the solid is of 
finite dimensions, x = l is its characteristic dimension, for example, the half-thickness for a plate, the radius, for 

a cylinder or a sphere; A, thermal conductivity coefficient, W/m- K; C -- Ceff, effective heat capacity per unit volume, 
dependent in the general case on x and T, kJ/m 3. K; T, temperature, K; Tph, Tsurf, and Treed, temperature of the 
phase transition, solid surface, and medium; Qph, heat of phase transition, kJ/m3; or, area of the region of heat 

release in time r in the coordinates T - x that takes place only in an unsteady process in a solid, m - K ;  a ,  heat- 
transfer coefficient on the solid surface, W/m 2. K, Bi ffi al/2t, Blot number; Y = Ysurf + Jint, thermal resistance along 
x from point x ffi x* to the medium, K/W; Jsurf, thermal resistance on the solid surface; Jint, internal thermal 
resistance. 
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